z-logo
Premium
Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi‐Interlocked Molecular Machines
Author(s) -
Legigan Thibaut,
RissYaw Benjamin,
Clavel Caroline,
Coutrot Frédéric
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201601286
Subject(s) - rotaxane , moiety , molecular machine , chemistry , catenane , slippage , combinatorial chemistry , stereochemistry , molecule , supramolecular chemistry , organic chemistry , materials science , nanotechnology , composite material
The efficient synthesis and very easy isolation of dibenzo[24]crown‐8‐based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown‐8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N ‐hydroxysuccinimide ester based pseudorotaxane building block by using either a mono‐ or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH‐dependent two‐station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom