Premium
A Two‐Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance: Development and Applications to Natural Product Synthesis
Author(s) -
Schaubach Sebastian,
Gebauer Konrad,
Ungeheuer Felix,
Hoffmeister Laura,
Ilg Marina K.,
Wirtz Conny,
Fürstner Alois
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201601163
Subject(s) - catalysis , chemistry , alkyne , combinatorial chemistry , metathesis , cycloisomerization , substrate (aquarium) , ruthenium , propargyl , functional group , propargyl alcohol , salt metathesis reaction , organic chemistry , oceanography , polymerization , geology , polymer
Although molybdenum alkylidyne complexes such as 1 endowed with triarylsilanolate ligands are excellent catalysts for alkyne metathesis, they can encounter limitations when (multiple) protic sites are present in a given substrate and/or when forcing conditions are necessary. In such cases, a catalyst formed in situ upon mixing of the trisamidomolybenum alkylidyne complex 3 and the readily available trisilanol derivatives 8 or 11 shows significantly better performance. This two‐component system worked well for a series of model compounds comprising primary, secondary or phenolic ‐OH groups, as well as for a set of challenging (bis)propargylic substrates. Its remarkable efficiency is also evident from applications to the total syntheses of manshurolide, a highly strained sesquiterpene lactone with kinase inhibitory activity, and the structurally demanding immunosuppressive cyclodiyne ivorenolide A; in either case, the standard catalyst 1 largely failed to effect the critical macrocyclization, whereas the two‐component system was fully operative. A study directed toward the quinolizidine alkaloid lythrancepine I features yet another instructive example, in that a triyne substrate was metathesized with the help of 3 / 11 such that two of the triple bonds participated in ring closure, while the third one passed uncompromised. As a spin‐off of this project, a much improved ruthenium catalyst for the redox isomerization of propargyl alcohols to the corresponding enones was developed.