Premium
Metal–Organic Frameworks as Catalysts for Oxidation Reactions
Author(s) -
Dhakshinamoorthy Amarajothi,
Asiri Abdullah M.,
Garcia Hermenegildo
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201505141
Subject(s) - metal organic framework , catalysis , chemistry , alkene , alcohol oxidation , autoxidation , primary (astronomy) , ketone , noble metal , alkane , organic chemistry , heterogeneous catalysis , metal , photochemistry , combinatorial chemistry , physics , adsorption , astronomy
This Concept is aimed at describing the current state of the art in metal–organic frameworks (MOFs) as heterogeneous catalysts for liquid‐phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal‐free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.