z-logo
Premium
Multiple Decay Mechanisms and 2D‐UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine‐Uracil Monophosphate
Author(s) -
Li Quansong,
Giussani Angelo,
SegarraMartí Javier,
Nenov Artur,
Rivalta Ivan,
Voityuk Alexander A.,
Mukamel Shaul,
RocaSanjuán Daniel,
Garavelli Marco,
Blancafort Lluís
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201505086
Subject(s) - conical intersection , excited state , singlet state , conformational isomerism , chemistry , spectroscopy , ground state , uracil , hydrogen bond , potential energy , photochemistry , atomic physics , molecule , physics , dna , biochemistry , organic chemistry , quantum mechanics
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1 L a state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1 L b and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1 L b , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm −1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here