Premium
Seed‐Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocages with Efficient Photothermal Property
Author(s) -
Lin ZhenWen,
Tsao YuChi,
Yang MinYi,
Huang Michael H.
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201504303
Subject(s) - nanocages , ascorbic acid , aqueous solution , silver nitrate , materials science , nanocrystal , chemical engineering , bromide , inorganic chemistry , nuclear chemistry , chemistry , nanotechnology , organic chemistry , catalysis , food science , engineering
Two seed‐mediated approaches for the growth of silver nanocubes in aqueous solution have been developed. Addition of a silver‐seed solution to a mixture of cetyltrimethylammonium chloride (CTAC), silver trifluoroacetate, and ascorbic acid and heating the solution at 60 °C for 1.5 h produces uniform Ag nanocubes with tunable sizes from 23 to 60 nm by simply adjusting the volume of silver‐seed solution introduced. Alternatively, the silver‐seed solution can be injected into a mixture of cetyltrimethylammonium bromide (CTAB), silver nitrate, copper sulfate, and ascorbic acid and heated to 80 °C for 2 h to generate 46 nm silver nanocubes. Plate‐like Ag nanocrystals exposing {111} surfaces can be synthesized by reducing Ag(NH 3 ) 2 + with ascorbic acid in a CTAC solution. Relatively large Ag nanocubes were converted to cuboctahedral Au/Ag and Au nanocages and nanoframes with empty {111} faces through a galvanic replacement reaction. The nanocages showed a progressive plasmonic band red‐shift with increasing Au content. The nanocages exhibited high and stable photothermal efficiency with solution temperatures quickly reaching beyond 100 °C when irradiated with an 808 nm laser for large heat and water vapor generation.