Premium
π‐Electron Systems That Form Planar and Interlocked Anion Complexes and Their Ion‐Pairing Assemblies
Author(s) -
Yamakado Ryohei,
Sakurai Tsuneaki,
Matsuda Wakana,
Seki Shu,
Yasuda Nobuhiro,
Akine Shigehisa,
Maeda Hiromitsu
Publication year - 2016
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201503654
Subject(s) - ion , crystallography , boron , chemistry , pairing , charge (physics) , electron , alkyl , molecule , chemical physics , stereochemistry , organic chemistry , physics , superconductivity , quantum mechanics
Interactions between designed charged species are important for the ordered arrangements of π‐electron systems in assembled structures. As precursors of π‐electron anion units, new arylethynyl‐substituted dipyrrolyldiketone boron complexes, which showed anion‐responsive behavior, were synthesized. They formed a variety of receptor–anion complexes ([1+1] and [2+1] types) in solution, and the stabilities of these complexes were discussed in terms of their thermodynamic parameters. Solid‐state ion‐pairing assemblies of [1+1]‐ and [2+1]‐type complexes with countercations were also revealed by single‐crystal X‐ray analysis. In particular, a totally charge‐segregated assembly was constructed based on negatively and positively charged layers fabricated from [2+1]‐type receptor–anion complexes and tetrabutylammonium cations, respectively. Furthermore, the [1+1]‐type anion complex of the receptor possessing long alkyl chains exhibited mesophases based on columnar assembled structures with contributions from charge‐by‐charge and charge‐segregated arrangements, which exhibited charge‐carrier transporting properties.