Premium
Light‐Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy
Author(s) -
Szymanski Wiktor,
Ourailidou Maria E.,
Velema Willem A.,
Dekker Frank J.,
Feringa Ben L.
Publication year - 2015
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201502809
Subject(s) - panobinostat , histone deacetylase , vorinostat , chemistry , hela , histone deacetylase inhibitor , chemotherapy , pharmacology , cancer research , medicine , histone , biochemistry , in vitro , gene
Cancer treatment suffers from limitations that have a major impact on the patient’s quality of life and survival. In the case of chemotherapy, the systemic distribution of cytotoxic drugs reduces their efficacy and causes severe side effects due to nonselective toxicity. Photopharmacology allows a novel approach to address these problems because it employs external, local activation of chemotherapeutic agents by using light. The development of photoswitchable histone deacetylase (HDAC) inhibitors as potential antitumor agents is reported herein. Analogues of the clinically used chemotherapeutic agents vorinostat, panobinostat, and belinostat were designed with a photoswitchable azobenzene moiety incorporated into their structure. The most promising compound exhibits high inhibitory potency in the thermodynamically less stable cis form and a significantly lower activity for the trans form, both in terms of HDAC activity and proliferation of HeLa cells. This approach offers a clear prospect towards local photoactivation of HDAC inhibition to avoid severe side effects in chemotherapy.