Premium
Patterned Paper Sensors Printed with Long‐Chain DNA Aptamers
Author(s) -
Carrasquilla Carmen,
Little Jessamyn R. L.,
Li Yingfu,
Brennan John D.
Publication year - 2015
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201500949
Subject(s) - aptamer , 3d printed , dna , nanotechnology , computational biology , computer science , engineering , biology , materials science , genetics , biomedical engineering
There is growing interest in developing printable paper sensors to enable rapid testing of analytes for environmental, food safety, and clinical applications. A major challenge is to find suitable bioinks that are amenable to high‐speed printing and remain functional after printing. We report on a simple and effective approach wherein an aqueous ink composed of megadalton‐sized tandem repeating structure‐switching DNA aptamers (concatemeric aptamers) is used to rapidly create patterned paper sensors on filter paper by inkjet printing. These concatemeric aptamer reporters remain immobilized at the point of printing through strong adsorption but retain sufficient segmental mobility to undergo structure switching and fluorescence signaling to provide both qualitative and quantitative detection of small molecules and protein targets. The convenience of inkjet printing allows for the patterning of internally referenced sensors with multiplexed detection, and provides a generic platform for on‐demand printing of sensors even in remote locations.