z-logo
Premium
meso ‐Free Corroles: Syntheses, Structures, Properties, and Chemical Reactivities
Author(s) -
Ooi Shota,
Yoneda Tomoki,
Tanaka Takayuki,
Osuka Atsuhiro
Publication year - 2015
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201500894
Subject(s) - corrole , chemistry , yield (engineering) , dimer , pyridine , photochemistry , benzene , porphyrin , reactivity (psychology) , medicinal chemistry , organic chemistry , materials science , medicine , alternative medicine , pathology , metallurgy
5,10‐Bis(pentafluorophenyl)corrole ( 5 ) and 5,15‐bis(pentafluorophenyl)corrole ( 9 ) have been synthesized as meso ‐free corroles by rational synthetic routes. Both the structures of these corroles have been unambiguously revealed by X‐ray diffraction analysis and their optical and electrochemical properties have been studied. Chlorination and oxidative dimerization of 5 and 9 have been explored, which revealed a marked different reactivity of the free meso ‐positions in 5 and 9 . 10‐Chlorinated corrole 11 was effectively prepared by the reaction of 9 with Palau‘chlor in the presence of 1 % pyridine whereas 5‐chlorinated corrole 12 was obtained in a trace amount from similar chlorination of 5 . 5,5′‐Linked corrole dimer 13 was produced by reaction of 5 with AgNO 2 in a good yield, whereas 10,10′‐linked corrole dimer 14 was formed in a moderate yield by the reaction of 9 with [bis(trifluoroacetoxy)iodo]benzene. Observed large electronic interaction between the two corroles in 13 as compared with that in 14 has been ascribed mainly to conformational flexibility of the former, which allows more coplanar conformation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here