z-logo
Premium
Multistep Flow Synthesis of 5‐Amino‐2‐aryl‐2 H ‐[1,2,3]‐triazole‐4‐carbonitriles
Author(s) -
Jacq Jérôme,
Pasau Patrick
Publication year - 2014
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201402074
Subject(s) - malononitrile , chemistry , combinatorial chemistry , context (archaeology) , aryl , cycloaddition , triazole , nucleophile , catalysis , organic chemistry , paleontology , alkyl , biology
1,2,3‐Triazole has become one of the most important heterocycles in contemporary medicinal chemistry. The development of the copper‐catalyzed Huisgen cycloaddition has allowed the efficient synthesis of 1‐substituted 1,2,3‐triazoles. However, only a few methods are available for the selective preparation of 2‐substituted 1,2,3‐triazole isomers. In this context, we decided to develop an efficient flow synthesis for the preparation of various 2‐aryl‐1,2,3‐triazoles. Our strategy involves a three‐step synthesis under continuous‐flow conditions that starts from the diazotization of anilines and subsequent reaction with malononitrile, followed by nucleophilic addition of amines, and finally employs a catalytic copper(II) cyclization. Potential safety hazards associated with the formation of reactive diazonium species have been addressed by inline quenching. The use of flow equipment allows reliable scale up processes with precise control of the reaction conditions. Synthesis of 2‐substituted 1,2,3‐triazoles has been achieved in good yields with excellent selectivities, thus providing a wide range of 1,2,3‐triazoles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom