Premium
Total Synthesis of (−)‐Platensimycin by Advancing Oxocarbenium‐ and Iminium‐Mediated Catalytic Methods
Author(s) -
Eey Stanley T.C.,
Lear Martin J.
Publication year - 2014
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201400131
Subject(s) - chemistry , lactol , iminium , aldol reaction , total synthesis , organic chemistry , stereochemistry , medicinal chemistry , combinatorial chemistry , catalysis , lactone
(−)‐Platensimycin is a potent inhibitor of fatty acid synthase that holds promise in the treatment of metabolic disorders (e.g., diabetes and “fatty liver”) and pathogenic infections (e.g., those caused by drug‐resistant bacteria). Herein, we describe its total synthesis through a four‐step preparation of the aromatic amine fragment and an improved stereocontrolled assembly of the ketolide fragment, (−)‐platensic acid. Key synthetic advances include 1) a modified Lieben haloform reaction to directly convert an aryl methyl ketone into its methyl ester within 30 seconds, 2) an experimentally improved dialkylation protocol to form platensic acid, 3) a sterically controlled chemo‐ and diastereoselective organocatalytic conjugate reduction of a spiro‐cyclized cyclohexadienone by using the trifluoroacetic acid salt of α‐amino di‐ tert ‐butyl malonate, 4) a tetrabutylammonium fluoride promoted spiro‐alkylative para dearomatization of a free phenol to assemble the cagelike ketolide core with the moderate leaving‐group ability of an early tosylate intermediate, and 5) a bismuth(III)‐catalyzed Friedel–Crafts cyclization of a free lactol, with LiClO 4 as an additive to liberate a more active oxocarbenium perchlorate species and suppress the Lewis basicity of the sulfonyloxy group. The longest linear sequence is 21 steps with an overall yield of 3.8 % from commercially available eugenol.