Premium
A Sulfonic‐Azobenzene‐Grafted Silica Amphiphilic Material: A Versatile Stationary Phase for Mixed‐Mode Chromatography
Author(s) -
Qiu Hongdeng,
Zhang Mingliang,
Gu Tongnian,
Takafuji Makoto,
Ihara Hirotaka
Publication year - 2013
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201302746
Subject(s) - azobenzene , sulfonic acid , chemistry , hydrophilic interaction chromatography , thermogravimetric analysis , chromatography , phase (matter) , column chromatography , amphiphile , selectivity , high performance liquid chromatography , reversed phase chromatography , organic chemistry , polymer , copolymer , catalysis
A novel sulfonic‐azobenzene‐functionalized amphiphilic silica material was synthesized through the preparation of a new sulfonic azobenzene monomer and its grafting on mercaptopropyl‐modified silica by a surface‐initiated radical chain‐transfer reaction. The synthesis was confirmed by infrared spectra, elemental analysis, and thermogravimetric analysis. This new material was successfully applied as a new kind of mixed‐mode stationary phase in liquid chromatography. This allows an exceptionally flexible adjustment of retention and selectivity by tuning the experimental conditions. The distinct separation mechanisms were outlined by selected examples of chromatographic separations in the different modes. In reversed‐phase liquid chromatography, this new stationary phase presented specific chromatographic performance when evaluated using a Tanaka test mixture. Seven dinitro aromatic isomers, four steroids, and seven flavonoids were separated successfully in simple reversed‐phase mode. This stationary phase can also be used in hydrophilic interaction chromatography because of the existing polar functional groups; for this, nucleosides and their bases were used as a test mixture. Interestingly, the same nucleosides and bases can also be separated in per aqueous liquid chromatography using the same stationary phase. Three ginsenosides including Rg1, Re, and Rb1 were successfully separated in hydrophilic mode. There is the potential for more applications to benefit from this useful column.