z-logo
Premium
A Unique Au–Ag–Au Triangular Motif in a Trimetallic Halonium Dication: Silver Incorporation in a Gold(I) Catalyst
Author(s) -
Zhu Yuyang,
Day Cynthia S.,
Zhang Lin,
Hauser Katarina J.,
Jones Amanda C.
Publication year - 2013
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201302152
Subject(s) - dication , counterion , silver salts , chemistry , phosphine , silver halide , crystallography , atom (system on chip) , halide , catalysis , inorganic chemistry , ion , organic chemistry , layer (electronics) , computer science , embedded system
As a result of explorations into the solution chemistry of silver/gold mixtures, a unique diphosphine trimetallic chloronium dication was discovered that incorporates silver–arene chelation and a triangular mixed gold/silver core in the solid state. Notably, it was isolated from a Celite prefiltered solution initially thought to be silver‐free. The crystal structure also incorporates the coordination to silver of one fluorine atom of one SbF 6 − counterion. The structure was compared to two new, but well‐precedented, phosphine digold chloride cations. DFT calculations supported significant silver–halide and silver–arene interactions in the mixed gold/silver complex and metallophilic interactions in all three complexes. Comparison of computed data revealed that the ωB97X‐D functional, which has a long‐range corrected hybrid with atom–atom dispersion corrections, gave a better fit to the experimental data compared with the PBE0 functional, which has previously failed to capture aurophilic interactions. Preliminary studies support the presence of the mixed gold/silver structure in solution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom