z-logo
Premium
Conformational Change from a Twisted Figure‐Eight to an Open‐Extended Structure in Doubly Fused 36π Core‐Modified Octaphyrins Triggered by Protonation: Implication on Photodynamics and Aromaticity
Author(s) -
Karthik Ganesan,
Lim Jong Min,
Srinivasan A.,
Suresh C. H.,
Kim Dongho,
Chandrashekar Tavarekere K.
Publication year - 2013
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201302020
Subject(s) - chemistry , protonation , porphyrin , crystallography , crystal structure , pyrrole , aromaticity , photochemistry , absorption spectroscopy , absorption (acoustics) , singlet state , molecule , materials science , excited state , organic chemistry , ion , composite material , physics , quantum mechanics , nuclear physics
Two examples of core‐modified 36π doubly fused octaphyrins that undergo a conformational change from a twisted figure‐eight to an open‐extended structure induced by protonation are reported. Syntheses of the two octaphyrins (in which Ar=mesityl or tolyl) were achieved by a simple acid‐catalyzed condensation of dipyrrane unit containing an electron‐rich, rigid dithienothiophene (DTT) core with pentafluorobenzaldehyde followed by oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). The single‐crystal X‐ray structure of the octaphyrin (in which Ar=mesityl) shows a figure‐eight twisted conformation of the expanded porphyrin skeleton with two DTT moieties oriented in a staggered conformation with a π‐cloud distance of 3.7 Å. Spectroscopic and quantum mechanical calculations reveal that both octaphyrins conform to a [4n]π nonaromatic electronic structure. Protonation of the pyrrole nitrogen atoms of the octaphyrins results in dramatic structural change, which led to 1) a large redshift and sharpening of absorption bands in electronic absorption spectrum, 2) a large change in chemical shift of pyrrole β‐CH and NH protons in the 1 H NMR spectrum, 3) a small increase in singlet lifetimes, and 4) a moderate increase in two‐photon absorption cross‐section values. Furthermore, nucleus‐independent chemical shift (NICS) values calculated at various geometrical positions show positive values and anisotropy‐induced current density (AICD) plots indicate paratropic ring‐currents for the diprotonated form of the octaphyrin (in which Ar=tolyl); the single‐crystal X‐ray structure of the diprotonated form of the octaphyrin shows an extended structure in which one of the pyrrole ring of each dipyrrin subunit undergoes a 180 ° ring‐flip. Four trifluoroacetic acid (TFA) molecules are bound above and below the molecular plane defined by meso ‐carbon atoms and are held by NH ⋅⋅⋅ O, NH ⋅⋅⋅ F, and CH ⋅⋅⋅ F intermolecular hydrogen‐bonding interactions. The extended‐open structure upon protonation allows π‐delocalization and the electronic structure conforms to a [4n]π Hückel antiaromatic in the diprotonated state.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here