Premium
Synthesis, Crystal Structure and Photophysical Properties of Pyrene–Helicene Hybrids
Author(s) -
Bédard AnneCatherine,
Vlassova Anna,
HernandezPerez Augusto C.,
Bessette André,
Hanan Garry S.,
Heuft Matthew A.,
Collins Shawn K.
Publication year - 2013
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201301431
Subject(s) - helicene , pyrene , chemistry , photochemistry , moiety , fluorescence , crystallography , stereochemistry , organic chemistry , molecule , optics , physics
Synthesis of helically chiral aromatics resulting from fusion of pyrene and [4]‐ or [5]helicene has been accomplished using photoredox catalysis employing a Cu‐based sensitizer as the key step. Photocyclisation experiments for the synthesis of the target compounds were carried out in batch and using continuous flow strategies. The solid‐state structures, UV/Vis absorption spectra and fluorescence spectra of the pyrene–helicene hybrids were investigated and compared to that of the parent [5]helicene to discern the effects of merging a pyrene moiety within a helicene skeleton. The studies demonstrated that pyrene–helicene hybrids adopt co‐planar or stacked arrangements in the solid state, in contrast to the solid‐state structure of the parent [5]helicene. The UV/Vis and fluorescence spectra of the pyrene–helicene hybrids exhibited strong red‐shifts when compared to the parent [5]helicene. DFT calculations suggest that the strategy of extending the π surface in the y axis of the helicenes increased their HOMO levels while also decreasing their LUMO levels, resulting in significantly reduced band gaps.