Premium
Bioconjugatable Azo‐Based Dark‐Quencher Dyes: Synthesis and Application to Protease‐Activatable Far‐Red Fluorescent Probes
Author(s) -
Chevalier Arnaud,
Massif Cédrik,
Renard PierreYves,
Romieu Anthony
Publication year - 2013
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201203427
Subject(s) - fluorescence , far red , chemistry , photochemistry , protease , combinatorial chemistry , organic chemistry , red light , biology , optics , botany , enzyme , physics
We describe the efficient synthesis and one‐step derivatization of novel, nonfluorescent azo dyes based on the Black Hole Quencher‐3 (BHQ‐3) scaffold. These dyes were equipped with various reactive and/or bioconjugatable groups (azido, α‐iodoacetyl, ketone, terminal alkyne, vicinal diol). The azido derivative was found to be highly reactive in the context of copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reactions and allowed easy synthetic access to the first water‐soluble (sulfonated derivative) and aldehyde‐modified BHQ‐3 dyes, the direct preparation of which failed by means of conventional azo‐coupling reactions. The aldehyde‐ and α‐iodoacetyl‐containing fluorescence quenchers were readily conjugated to aminooxy‐ and cysteine‐containing peptides by the formation of a stable oxime or thioether linkage, respectively. Further fluorescent labeling of the resultant peptide conjugates with red‐ or far‐red‐emitting rhodamine or cyanine dyes through sequential and/or one‐pot bioconjugations, led to novel Förster resonance energy transfer (FRET) based probes suitable for the in vivo detection and imaging of urokinase plasminogen activator, a key protease in cancer invasion and metastasis.