Premium
A Chiral Self‐Assembled Monolayer Derived from a Resolving Agent and its Performance as a Crystallization Template for an Organic Compound from Organic Solvents
Author(s) -
BejaranoVillafuerte Ángela,
van der Meijden Maarten W.,
Lingenfelder Magalí,
Wurst Klaus,
Kellogg Richard M.,
Amabilino David B.
Publication year - 2012
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201202681
Subject(s) - nucleation , monolayer , crystallite , crystallization , crystallography , crystal growth , materials science , chemistry , chemical engineering , evaporation , self assembly , crystal (programming language) , organic chemistry , nanotechnology , physics , engineering , thermodynamics , programming language , computer science
A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single‐crystal X‐ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self‐assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two‐dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl 3 or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions.