Premium
Graphene Nanosheets as a Platform for the 2D Ordering of Metal Oxide Nanoparticles: Mesoporous 2D Aggregate of Anatase TiO 2 Nanoparticles with Improved Electrode Performance
Author(s) -
Lee Jang Mee,
Kim In Young,
Han Song Yi,
Kim Tae Woo,
Hwang SeongJu
Publication year - 2012
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201200551
Subject(s) - materials science , nanocomposite , anatase , calcination , mesoporous material , nanoparticle , chemical engineering , nanosheet , oxide , graphene , titanate , nanotechnology , composite material , ceramic , photocatalysis , catalysis , chemistry , organic chemistry , metallurgy , engineering
Graphene nanosheets are successfully applied as an effective platform for the 2D ordering of metal oxide nanoparticles. Mesoporous 2D aggregates of anatase TiO 2 nanoparticles are synthesized by the heat treatment of the uniformly hybridized nanocomposite of layered titanate–reduced graphene oxide (RGO) at elevated temperatures. The precursor layered titanate–RGO nanocomposite is prepared by self‐assembly of anionic RGO nanosheets and cationic TiO 2 nanosols. The calcination of the as‐prepared layered titanate–RGO nanocomposite at 500 °C induces a structural and morphological change of layered titanate nanoplates into anatase TiO 2 nanoparticles without significant modification of the RGO nanosheet. Increasing the heating temperature to 600 °C gives rise to elimination of the RGO component, leading to the formation of sheetlike porous aggregates of RGO‐free TiO 2 nanoparticles. The nanocomposites calcined at 500–700 °C display promising functionality as negative electrodes for lithium ion batteries. Among the present calcined derivatives, the 2D sheet‐shaped aggregate of TiO 2 nanoparticles obtained from calcination at 600 °C delivers the greatest specific discharge capacity with good capacity retention for all current density conditions applied. Such superior electrode performance of the nanocomposite calcined at 600 °C is attributable both to the improved stability of the crystal structure and crystal morphology of titania and to the enhancement of Li + ion transport through the enlargement of mesopores. The present findings clearly demonstrate the usefulness of RGO nanosheets as a platform for 2D‐ordered superstructures of metal oxide nanoparticles with improved electrode performance.