Premium
Noncovalent Water‐Based Materials: Robust yet Adaptive
Author(s) -
Krieg Elisha,
Rybtchinski Boris
Publication year - 2011
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201100809
Subject(s) - non covalent interactions , robustness (evolution) , nanotechnology , polymer , amphiphile , covalent bond , materials science , computer science , aqueous solution , chemistry , molecule , organic chemistry , hydrogen bond , biochemistry , copolymer , composite material , gene
The adaptive properties of noncovalent materials allow easy processing, facile recycling, self‐healing, and stimuli responsiveness. However, the poor robustness of noncovalent systems has hampered their use in real‐life applications. In this Concept Article we discuss the possibility of creating robust noncovalent arrays by utilizing strong hydrophobic interactions. We describe examples from our work on aqueous assemblies based on aromatic amphiphiles with extended hydrophobic cores. These arrays exhibit fascinating properties, including robustness, multiple stimuli‐responsiveness, and pathway‐dependent self‐assembly. We have shown that this can lead to functional materials (filtration membranes) rivaling covalent systems. We anticipate that water‐based noncovalent materials have the potential to replace or complement conventional polymer materials in various fields, and to promote novel applications that require the combination of robustness and adaptivity.