Premium
Sequence‐Controlled Oligomers Fold into Nanosolenoids and Impart Unusual Optical Properties
Author(s) -
Shaller Andrew D.,
Wang Wei,
Li Aixiao,
Moyna Guillermo,
Han Jason J.,
Helms Gregory L.,
Li Alexander D. Q.
Publication year - 2011
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201100612
Subject(s) - chemistry , crystallography , chromophore , stacking , aromaticity , dimer , nuclear magnetic resonance spectroscopy , diimide , molecule , photochemistry , stereochemistry , organic chemistry , perylene
Controlled syntheses give unique block oligomers with alternating flexible ethylene glycol and rigid perylenetetracarboxylic diimide (PDI) units. The number of rigid units vary from n =1 to 10. PDI units were stitched together by using efficient phosphoramidite chemistry. The resulting oligomers undergo folding in most solvents, including chloroform. In their ground state, these folded oligomers were characterized by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR‐MS), NMR spectroscopy, and electronic absorption spectroscopy. FTICR‐MS revealed the exact masses of these sequence‐controlled oligomers, which confirmed the chemical composition and validated the synthetic strategy. The NMR neighboring ring‐current effect (NRE) indicates the formation of cofacial π stacks; the stacked aromatic rings have nearly coaxial alignment akin to a nanosoleniod. Nanosolenoidal shielding in π stacks causes all aromatic protons to shift upfield, whereas NOE in a cyclic hetero‐chromophoric dimer supports a rotated, cofacial π‐stacking orientation separated by about 3.5 Å. Electron–phonon coupling is much stronger than excitonic coupling in these self‐folded PDI oligomers; thus, Franck–Condon factors dictate the observed spectral features in visible spectra. The absorbance spectrum exhibits weak hypochromism due to π stacking with increasing stacking units n . Finally, ab initio calculations support the experimental observations, indicating 3.5 Å cofacial spacing in which one molecule is rotated 30° from the eclipsed orientation and higher oligomers can adopt, without a compensating energy penalty, either the right/left‐handed helices or the 1,3‐eclipsed structures. Both theory and experiments validate the nano‐π‐solenoids and their novel photophysical properties.