Premium
Substituent‐Controlled Reactivity in the Nazarov Cyclisation of Allenyl Vinyl Ketones
Author(s) -
Marx Vanessa M.,
Stoddard Rhonda L.,
HeverlyCoulson Gavin S.,
Burnell D. Jean
Publication year - 2011
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201100519
Subject(s) - substituent , reactivity (psychology) , chemistry , organic chemistry , medicinal chemistry , medicine , alternative medicine , pathology
Alkyl substitution α to the ketone of an allenyl vinyl ketone enhances Nazarov reactivity by inhibiting alternative pathways involving the allene moiety and through electron donation and/or steric hindrance. This substitution pattern also accelerates Nazarov cyclisation by increasing the population of the reactive conformer and by stabilising the oxyallyl cation intermediate. Furthermore, α substitution by an alkyl group does not alter the regioselectivity of interrupted Nazarov reactions when the oxyallyl cation intermediate is intercepted by addition of an oxygen nucleophile, or by [4+3] cyclisation with acyclic dienes. The regioselectivity of the Nazarov process for allenyl vinyl ketones was determined to be a result of an electronic bias in the oxyallyl cation intermediate. Computational data are consistent with this observation.