Premium
Magnetic Electrochemiluminescent Fe 3 O 4 /CdSe–CdS Nanoparticle/Polyelectrolyte Nanocomposite for Highly Efficient Immunosensing of a Cancer Biomarker
Author(s) -
Jie Guifen,
Wang Lei,
Zhang Shusheng
Publication year - 2011
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201001128
Subject(s) - electrochemiluminescence , detection limit , nanocomposite , nanoparticle , nanotechnology , materials science , polyelectrolyte , electrode , chemistry , chromatography , polymer , composite material
Magnetic electrochemiluminescent Fe 3 O 4 /CdSe–CdS nanoparticle/polyelectrolyte nanostructures have been synthesized and used to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA). CEA is a protein used as a biomarker for several cancers; particularly, to monitor response to treatment in colon and rectal cancer patients. The nanocomposites can be easily separated and firmly attached to an electrode owing to their excellent magnetic properties. This represents a promising advantage for bioassay applications. More importantly, the nanostructures exhibit intense and stable ECL emissions in neutral solution, which makes them ideal for ECL immunosensing. The 3‐aminopropyltriethoxysilane (APS) polyelectrolyte shell on the nanostructure surface not only enhances the intensity and stability of the ECL signal, but also acts as a crosslinker for immunosensor fabrication. A CEA antibody immobilized onto a nanocomposite/APS/electrode with gold nanoparticles comprises the ECL immunosensor. The principle of ECL detection for CEA is based on a change in steric hindrance after immunoreaction, which leads to a decrease in ECL intensity. A wide detection range (0.064 pg ml −1 –10 ng ml −1 ) and low detection limit (0.032 pg ml −1 ) are achieved. The immunosensor is highly sensitive and selective, and exhibits excellent stability and good reproducibility. It thus has great potential for clinical protein detection. In particular, this approach uses a novel class of bifunctional nanocomposites that display both intense ECL and excellent magnetism, which renders them suitable for a large range of bioassay applications.