Premium
Solution Structure, Mechanism of Replication, and Optimization of an Unnatural Base Pair
Author(s) -
Malyshev Denis A.,
Pfaff Danielle A.,
Ippoliti Shan I.,
Hwang Gil Tae,
Dwyer Tammy J.,
Romesberg Floyd E.
Publication year - 2010
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201000959
Subject(s) - base pair , alphabet , nucleotide , replication (statistics) , stereochemistry , dna replication , dna , base (topology) , chemistry , genetics , computational biology , biology , mathematics , gene , mathematical analysis , linguistics , philosophy , virology
Abstract As part of an ongoing effort to expand the genetic alphabet for in vitro and eventual in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs and evaluated their replication in DNA. Collectively, the results have led us to propose that these base pairs, which lack stabilizing edge‐on interactions, are replicated by means of a unique intercalative mechanism. Here, we report the synthesis and characterization of three novel derivatives of the nucleotide analogue d MMO2 , which forms an unnatural base pair with the nucleotide analogue d 5SICS . Replacing the para ‐methyl substituent of d MMO2 with an annulated furan ring (yielding d FMO ) has a dramatically negative effect on replication, while replacing it with a methoxy (d DMO ) or with a thiomethyl group (d TMO ) improves replication in both steady‐state assays and during PCR amplification. Thus, d TMO –d 5SICS , and especially d DMO –d 5SICS , represent significant progress toward the expansion of the genetic alphabet. To elucidate the structure–activity relationships governing unnatural base pair replication, we determined the solution structure of duplex DNA containing the parental d MMO2 –d 5SICS pair, and also used this structure to generate models of the derivative base pairs. The results strongly support the intercalative mechanism of replication, reveal a surprisingly high level of specificity that may be achieved by optimizing packing interactions, and should prove invaluable for the further optimization of the unnatural base pair.