Premium
Solution‐Processable Flower‐Shaped Hierarchical Structures: Self‐Assembly, Formation, and State Transition of Biomimetic Superhydrophobic Surfaces
Author(s) -
Yin Jie,
Yan Jing,
He Min,
Song Yanlin,
Xu Xiaoguang,
Wu Kai,
Pei Jian
Publication year - 2010
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201000332
Subject(s) - self assembly , nanotechnology , materials science , polymer science
Superhydrophobic surfaces inspired by biological microstructures attract considerable attention from researchers because of their potential applications. In this contribution, two kinds of microscale flower‐shaped morphologies with nanometer petals formed from the hierarchical self‐assembly of benzothiophene derivatives bearing long alkyl chains have been developed as superhydrophobic surfaces. The intermediate stages of the assemblies demonstrated a new formation mechanism for such flower‐shaped morphologies. The hierarchical morphologies of the film exhibited excellent water‐repelling characteristics as superhydrophobic surfaces, which were prepared by means of a simple solution process. The transition process from the Cassie state to Wenzel state was easily realized owing to the slight microstructural differences in the two kinds of flowers caused by their different chemical structures. The superhydrophobicity of such functional materials might be beneficial for applications in electrical devices in which the presence of water would influence their performance.