z-logo
Premium
A General Approach to Fabricate Diverse Noble‐Metal (Au, Pt, Ag, Pt/Au)/Fe 2 O 3 Hybrid Nanomaterials
Author(s) -
Zhang Jun,
Liu Xianghong,
Guo Xianzhi,
Wu Shihua,
Wang Shurong
Publication year - 2010
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.201000096
Subject(s) - nanomaterials , noble metal , materials science , nanotechnology , nanoparticle , hybrid material , selectivity , linker , reagent , metal , combinatorial chemistry , chemistry , catalysis , computer science , organic chemistry , metallurgy , operating system
A novel, facile, and general one‐pot strategy is explored for the synthesis of diverse noble‐metal (Au, Pt, Ag, or Pt/Au)/Fe 2 O 3 hybrid nanoparticles with the assistance of lysine (which is a nontoxic, user friendly amino acid that is compatible with organisms) and without using any other functionalization reagents. Control experiments show that lysine, which contains both amino and carboxylic groups, plays dual and crucial roles as both linker and capping agents in attaching noble metals with a small size and uniform distribution onto an Fe 2 O 3 support. Considering the perfect compatibility of lysine with organism, this approach may find potentials in biochemistry and biological applications. Furthermore, this novel route is also an attractive alternative and supplement to the current methods using a silane coupling agent or polyelectrolyte for preparing hybrid nanomaterials. To demonstrate the usage of such hybrid nanomaterials, a chemical gas sensor has been fabricated from the as‐synthesized Au/Fe 2 O 3 nanoparticles and investigated for ethanol detection. Results show that the hybrid sensor exhibits significantly improved sensor performances in terms of high sensitivity, low detection limit, better selectivity, and good reproducibility in comparison with pristine Fe 2 O 3 . Most importantly, this general approach can be further employed to fabricate other hybrid nanomaterials based on different support materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here