z-logo
Premium
Chiral Transformation in Protonated and Deprotonated Adipic Acids through Multistep Internal Proton Transfer
Author(s) -
Min Seung Kyu,
Park Mina,
Singh N. Jiten,
Lee Han Myoung,
Lee Eun Cheol,
Kim Kwang S.,
Lagutschenkov Anita,
NiednerSchatteburg Gereon
Publication year - 2010
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200903355
Subject(s) - deprotonation , protonation , hydrogen bond , chemistry , intramolecular force , proton , steric effects , crystallography , ion , low barrier hydrogen bond , photochemistry , computational chemistry , stereochemistry , molecule , organic chemistry , physics , quantum mechanics
Protonated and deprotonated adipic acids (PAA: HOOC(CH 2 ) 4 COOH 2 + and DAA: HOOC(CH 2 ) 4 COO − ) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H 2 O⋅⋅⋅H⋅⋅⋅OH 2 ) + Zundel‐like symmetric hydrogen bonding, whereas that of DAA has H 3 O + Eigen‐like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel‐like ions for PAA and Eigen‐like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH⋅⋅⋅O short hydrogen‐bond stretching peaks are predicted in the range of 1000–1700 cm −1 in the Car–Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen‐bond peaks. The OHO stretching peaks in the range of 1800–2700 cm −1 become insignificant above around 150 K and are almost washed out at about 300 K.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here