Premium
A Bifunctional Pd/MgO Solid Catalyst for the One‐Pot Selective N‐Monoalkylation of Amines with Alcohols
Author(s) -
Corma Avelino,
Ródenas Tania,
Sabater María J.
Publication year - 2010
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200901501
Subject(s) - bifunctional , catalysis , chemistry , bifunctional catalyst , solid acid , organic chemistry , combinatorial chemistry
It has been found that a bifunctional metal Pd/base (MgO) catalyst performs the selective monoalkylation of amines with alcohols. The reaction goes through a series of consecutive steps in a cascade mode that involves: 1) the abstraction of hydrogen from the alcohol that produces the metal hydride and the carbonyl compound; 2) condensation of the carbonyl with the amine to give an imine, and 3) hydrogenation of the imine with the surface hydrogen atoms from the metal hydride. Based on isotopic and spectroscopic studies and on the rate of each elementary step, a global reaction mechanism has been proposed. The controlling step of the process is the hydride transfer from the metal to the imine. By changing the crystallite size of the Pd, it is demonstrated that this is a structure‐sensitive reaction, whereas the competing processes that lead to subproducts are not. On these bases, a highly selective catalyst has been obtained with Pd crystallite size below 2.5 nm in diameter. The high efficiency of the catalytic system has allowed us to extend the process to the one‐pot synthesis of piperazines.