Premium
Rational Design, Synthesis, and Optical Properties of Film‐Forming, Near‐Infrared Absorbing, and Fluorescent Chromophores with Multidonors and Large Heterocyclic Acceptors
Author(s) -
Luo Min,
Shadnia Hooman,
Qian Gang,
Du Xiaobo,
Yu Dengbin,
Ma Dongge,
Wright James S.,
Wang Zhi Yuan
Publication year - 2009
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200900891
Subject(s) - chromophore , photochemistry , materials science , excited state , acceptor , homo/lumo , absorption (acoustics) , conjugated system , electron acceptor , doping , band gap , fluorescence , ground state , photoluminescence , absorption band , optoelectronics , chemistry , molecule , organic chemistry , optics , polymer , physics , quantum mechanics , nuclear physics , composite material , condensed matter physics
A new series of film‐forming, low‐bandgap chromophores ( 1 a,b and 2 a,b ) were rationally designed with aid of a computational study, and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron‐donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27–0.71 eV, and accordingly absorb at 746–1003 nm and emit at 1035–1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol −1 ) and non‐coplanar structure allow these near‐infrared (NIR) chromophores to be readily spin‐coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]‐phenyl‐C 61 butyric acid methyl ester leads to a red shift in the absorption only for 1 a and 2 a . An interesting NIR electrochromism was found for 2 a , with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256–318 nm) is also unique for this multidonor–acceptor type of chromophore, indicating a significant structural difference between the ground state and the excited state. Photoluminescence of the film of 2 a was further probed at variable temperatures and the results strongly suggest that the restriction of bond rotations certainly helps to diminish non‐radiative decay and thus enhance the luminescence of these large chromophores.