Premium
Noncovalent Modulation of pH‐Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide
Author(s) -
Zhang JunLong,
Garner Dewain K.,
Liang Lei,
Barrios David A.,
Lu Yi
Publication year - 2009
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200802449
Subject(s) - chemistry , reactivity (psychology) , myoglobin , hydrogen bond , ligand (biochemistry) , hydrogen peroxide , dimer , medicinal chemistry , hemeprotein , stereochemistry , crystallography , photochemistry , enzyme , organic chemistry , heme , molecule , biochemistry , receptor , medicine , alternative medicine , pathology
Abstract To demonstrate protein modulation of metal‐cofactor reactivity through noncovalent interactions, pH‐dependent sulfoxidation and 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid) (ABTS) oxidation reactivity of a designed myoglobin (Mb) containing non‐native Mn–salen complex ( 1 ) was investigated using H 2 O 2 as the oxidant. Incorporation of 1 inside the Mb resulted in an increase in the turnover numbers through exclusion of water from the metal complex and prevention of Mn–salen dimer formation. Interestingly, the presence of protein in itself is not enough to confer the increase activity as mutation of the distal His64 in Mb to Phe to remove hydrogen‐bonding interactions resulted in no increase in the turnover numbers, while mutation His64 to Arg, another residue with ability to hydrogen‐bond interactions, resulted in an increase in reactivity. These results strongly suggest that the distal ligand His64, through its hydrogen‐bonding interaction, plays important roles in enhancing and fine‐tuning reactivity of the Mn–salen complex. Nonlinear least‐squares fitting of rate versus pH plots demonstrates that 1⋅ Mb(H64X) (X=H, R and F) and the control Mn–salen 1 exhibit p K a values varying from pH 6.4 to 8.3, and that the lower p K a of the distal ligand in 1 ⋅Mb(H64X), the higher the reactivity it achieves. Moreover, in addition to the p K a at high pH, 1⋅ Mb displays another p K a at low pH, with p K a of 5.0±0.08. A comparison of the effect of different pH on sulfoxidation and ABTS oxidation indicates that, while the intermediate produced at low pH conditions could only perform sulfoxidation, the intermediate at high pH could oxidize both sulfoxides and ABTS. Such a fine‐control of reactivity through hydrogen‐bonding interactions by the distal ligand to bind, orient and activate H 2 O 2 is very important for designing artificial enzymes with dramatic different and tunable reactivity from catalysts without protein scaffolds.