z-logo
Premium
Light‐Harvesting Supramolecular Porphyrin Macrocycle Accommodating a Fullerene–Tripodal Ligand
Author(s) -
Kuramochi Yusuke,
Satake Akiharu,
Itou Mitsunari,
Ogawa Kazuya,
Araki Yasuyuki,
Ito Osamu,
Kobuke Yoshiaki
Publication year - 2008
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200701720
Subject(s) - chemistry , tripodal ligand , porphyrin , tripod (photography) , moiety , fullerene , ligand (biochemistry) , photochemistry , stereochemistry , supramolecular chemistry , crystallography , organic chemistry , crystal structure , biochemistry , physics , optics , receptor
Trisporphyrinatozinc(II) ( 1 –Zn) with imidazolyl groups at both ends of the porphyrin self‐assembles exclusively into a light‐harvesting cyclic trimer (N‐( 1 –Zn) 3 ) through complementary coordination of imidazolyl to zinc(II). Because only the two terminal porphyrins in 1 –Zn are employed in ring formation, macrocycle N‐( 1 –Zn) 3 leaves three uncoordinated porphyrinatozinc(II) groups as a scaffold that can accommodate ligands into the central pore. A pyridyl tripodal ligand with an appended fullerene connected through an amide linkage (C 60 –Tripod) was synthesized by coupling tripodal ligand 3 with pyrrolidine‐modified fullerene, and this ligand was incorporated into N‐( 1 –Zn) 3 . The binding constant for C 60 –Tripod in benzonitrile reached the order of 10 8   M −1 . This value is ten times larger than those of pyridyl tetrapodal ligand 2 and tripodal ligand 3 . This behavior suggests that the fullerene moiety contributes to enhance the binding of C 60 –Tripod in N‐( 1 –Zn) 3 . The fluorescence of N‐( 1 –Zn) 3 was almost completely quenched (≈97 %) by complexation with C 60 –Tripod, without any indication of the formation of charge‐separated species or a triplet excited state of either porphyrin or fullerene in the transient absorption spectra. These observations are explained by the idea that the fullerene moiety of C 60 –Tripod is in direct contact with the porphyrin planes of N‐( 1 –Zn) 3 through fullerene–porphyrin π–π interactions. Thus, C 60 –Tripod is accommodated in N‐( 1 –Zn) 3 with a π–π interaction and two pyridyl coordinations. The cooperative interaction achieves a sufficiently high affinity for quantitative and specific introduction of one equivalent of tripodal guest into the antenna ring, even under dilute conditions (≈10 −7   M ) in polar solvents such as benzonitrile. Additionally, complete fluorescence quenching of N‐( 1 –Zn) 3 when accommodating C 60 –Tripod demonstrates that all of the excitation energy collected by the nine porphyrins migrates rapidly over the macrocycle and then converges efficiently on the fullerene moiety by electron transfer.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here