Premium
Chirality Transfer from Silicon to Carbon
Author(s) -
Oestreich Martin
Publication year - 2005
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200500782
Subject(s) - stereocenter , silanes , silicon , chirality (physics) , intramolecular force , chemistry , nanotechnology , materials science , catalysis , stereochemistry , enantioselective synthesis , organic chemistry , physics , silane , chiral symmetry , particle physics , quark , nambu–jona lasinio model
The exploitation of the asymmetry at silicon in stereoselective synthesis is an exceptionally challenging task. Initially, silicon‐stereogenic silanes have been utilized to elucidate the stereochemical course of substitution reactions at silicon. Apart from these mechanistic investigations, only a handful of synthetic applications with an asymmetrically substituted silicon as the stereochemical controller have been reported to date. In these transformations the chiral silicon functions as a chiral auxiliary. Conversely, a direct transfer of chirality from silicon to carbon during bond formation and cleavage at silicon has remained open until its recent realization in both inter‐ and intramolecular reactions. In this Concept, the pivotal considerations in relation to the nature of suitable silanes as well as mechanistic prerequisites for an efficient chirality transfer will be discussed.