Premium
The Use of Imidazolium Ionic Liquids for the Formation and Stabilization of Ir 0 and Rh 0 Nanoparticles: Efficient Catalysts for the Hydrogenation of Arenes
Author(s) -
Fonseca Gledison S.,
Umpierre Alexandre P.,
Fichtner Paulo F. P.,
Teixeira Sergio R.,
Dupont Jairton
Publication year - 2003
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200304753
Subject(s) - ionic liquid , catalysis , nanoparticle , hexafluorophosphate , hydrogenolysis , chemistry , iridium , inorganic chemistry , transition metal , anisole , materials science , organic chemistry , nanotechnology
Stable transition‐metal nanoparticles of the type [M 0 ] n are easily accessible through the reduction of Ir I or Rh III compounds dissolved in “dry” 1‐ n ‐butyl‐3‐methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M 0 ] n nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition‐metal fluorides. Transmission electron microscopy (TEM) observations and X‐ray diffraction analysis (XRD) show the formation of [Ir 0 ] n and [Rh 0 ] n nanoparticles with 2.0–2.5 nm in diameter. The isolated [M 0 ] n nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid–liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 °C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir 0 ] n in solventless conditions. Contrarily, the recovered Rh 0 nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir 0 ] n nanoparticles occurs with concomitant hydrogenolysis of the CO bond, suggesting that these nanoparticles behave as “heterogeneous catalysts” rather than “homogeneous catalysts”.