Premium
Columnar Mesomorphism from Hemi‐Disklike Metallomesogens Derived from 2,6‐Bis[3′,4′,5′‐tri(alkoxy)phenyliminomethyl]pyridines (L): Crystal and Molecular Structures of [M(L)Cl 2 ] (M=Mn, Ni, Zn)
Author(s) -
Morale Francesca,
Date Richard W.,
Guillon Daniel,
Bruce Duncan W.,
Finn Rachel L.,
Wilson Claire,
Blake Alexander J.,
Schröder Martin,
Donnio Bertrand
Publication year - 2003
Publication title -
chemistry – a european journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.687
H-Index - 242
eISSN - 1521-3765
pISSN - 0947-6539
DOI - 10.1002/chem.200204578
Subject(s) - mesophase , crystallography , liquid crystal , columnar phase , alkoxy group , stacking , chemistry , phase (matter) , thermal stability , materials science , organic chemistry , alkyl , optoelectronics
Abstract Four new series of non‐disklike complexes of general formula [MCl 2 (L n )] based upon substituted 2,6‐bis(3′,4′,5′‐trialkoxyphenyliminomethyl)pyridine ligands (L n ) and with M=Zn II , Co II , Mn II , and Ni II have been prepared and examined for liquid crystallinity. A complete analysis of the thermal behavior by polarized‐light optical microscopy, differential scanning calorimetry, and small‐angle Xray scattering revealed a rich and varied mesomorphism. Moreover, the high thermal stability of the compounds leads to rather extended mesomorphic ranges. The nature and thermal stability of each mesophase depend on both the length of the six terminal alkoxy chains, n ( n =8, 10, 12, 14, 16), and on the metal ions. As demonstrated by small‐angle Xray diffraction experiments, the mesomorphism of these complexes is solely of the columnar type. One compound shows an oblique columnar phase, while most of them show a hexagonal columnar phase, Col h , and several types of rectangular columnar phase, Col r . Xray single‐crystal structures obtained for three methoxy derivatives confirm the 1:1 metal–ligand stoichiometry of the complexes, in which the metal is pentacoordinate with a distorted, trigonal bipyramidal geometry. The crystalline structures also reveal the existence of some columnar organization in the solid state, the columns resulting from an alternated stacking of the complexes in one direction. By combining these results with those obtained from dilatometry experiments, a model for the molecular organization within the mesophases is proposed in which an antiparallel arrangement of the metallomesogens is retained in the mesophase.