Premium
Combination of support vector machines (SVM) and near‐infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds
Author(s) -
Pierna J. A. Fernández,
Baeten V.,
Renier A. Michotte,
Cogdill R. P.,
Dardenne P.
Publication year - 2004
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.877
Subject(s) - support vector machine , partial least squares regression , meat and bone meal , artificial intelligence , pattern recognition (psychology) , artificial neural network , chemometrics , computer science , near infrared spectroscopy , multivariate statistics , biological system , machine learning , optics , biology , physics , fish meal , fishery , fish <actinopterygii>
This study concerns the development of a new system to detect meat and bone meal (MBM) in compound feeds, which will be used to enforce legislation concerning feedstuffs enacted after the European mad cow crisis. Focal plane array near‐infrared (NIR) imaging spectroscopy, which collects thousands of spatially resolved spectra in a massively parallel fashion, has been suggested as a more efficient alternative to the current methods, which are tedious and require significant expert human analysis. Chemometric classification strategies have been applied to automate the method and reduce the need for constant expert analysis of the data. In this work the performance of a new method for multivariate classification, support vector machines (SVM), was compared with that of two classical chemometric methods, partial least squares (PLS) and artificial neural networks (ANN), in classifying feed particles as either MBM or vegetal using the spectra from NIR images. While all three methods were able to effectively model the data, SVM was found to perform substantially better than PLS and ANN, exhibiting a much lower rate of false positive detection. Copyright © 2004 John Wiley & Sons, Ltd.