z-logo
Premium
A new efficient method for determining the number of components in PARAFAC models
Author(s) -
Bro Rasmus,
Kiers Henk A. L.
Publication year - 2003
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.801
Subject(s) - consistency (knowledge bases) , range (aeronautics) , dimension (graph theory) , computer science , core (optical fiber) , algorithm , data consistency , data mining , mathematics , artificial intelligence , engineering , telecommunications , pure mathematics , aerospace engineering , operating system
A new diagnostic called the core consistency diagnostic (CORCONDIA) is suggested for determining the proper number of components for multiway models. It applies especially to the parallel factor analysis (PARAFAC) model, but also to other models that can be considered as restricted Tucker3 models. It is based on scrutinizing the ‘appropriateness’ of the structural model based on the data and the estimated parameters of gradually augmented models. A PARAFAC model (employing dimension‐wise combinations of components for all modes) is called appropriate if adding other combinations of the same components does not improve the fit considerably. It is proposed to choose the largest model that is still sufficiently appropriate. Using examples from a range of different types of data, it is shown that the core consistency diagnostic is an effective tool for determining the appropriate number of components in e.g. PARAFAC models. However, it is also shown, using simulated data, that the theoretical understanding of CORCONDIA is not yet complete. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here