Premium
Removal of brilliant green and malachite green from aqueous solution by a viable magnetic polymeric nanocomposite: Simultaneous spectrophotometric determination of 2 dyes by PLS using original and first derivative spectra
Author(s) -
Bagtash Maryam,
Zolgharnein Javad
Publication year - 2018
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.3014
Subject(s) - malachite green , brilliant green , aqueous solution , adsorption , chemistry , freundlich equation , langmuir , spectrophotometry , analytical chemistry (journal) , nanocomposite , fourier transform infrared spectroscopy , nuclear chemistry , materials science , chromatography , chemical engineering , organic chemistry , nanotechnology , engineering
Abstract Here, we describe the successful synthesis of a new magnetic nanocomposite and investigate simultaneous removal of 2 cationic dyes, brilliant green (BG) and malachite green (MG), from aqueous solutions. The nanocomposite is characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermal gravimetric analysis, and Fourier‐transform infrared spectrophotometry. The spectra of BG and MG in their mixture show severe overlapping. Therefore, partial least square (PLS) regression is applied for simultaneous determination of target dyes. The original and first derivative spectra of the binary mixtures are used to perform the optimization of the calibration matrices by the PLS method. According to statistical values, PLS on first derivative spectral data has given better results with respect to the original data. The coefficients of determination ( R 2 ) for the test data set were 0.998 and 0.9996; root mean square error of prediction values for BG and MG were 0.12 and 0.19, respectively. Furthermore, adsorption kinetics and effects of various variables such as solution pH, adsorbent amount, and initial dye concentration are investigated. Under optimized conditions (adsorbent mass, 0.08 g; solution pH, 8; and contact time, 60 min), equilibrium experimental data are represented by Langmuir, Freundlich, and Sips isotherms. Results briefly show that adsorption of dyes by nanocomposite obeys pseudo–second‐order kinetic model and Sips isotherm.