Premium
Analytical expressions for topological properties of polycyclic benzenoid networks
Author(s) -
Arockiaraj Micheal,
Clement Joseph,
Balasubramanian Krishnan
Publication year - 2016
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.2851
Subject(s) - parallelogram , reciprocal , vertex (graph theory) , topological index , mathematics , topology (electrical circuits) , wiener index , combinatorics , neighbourhood (mathematics) , enhanced data rates for gsm evolution , computer science , graph , mathematical analysis , artificial intelligence , linguistics , philosophy , robot
Quantitative structure‐activity and structure‐property relationships of complex polycyclic benzenoid networks require expressions for the topological properties of these networks. Structure‐based topological indices of these networks enable prediction of chemical properties and the bioactivities of these compounds through quantitative structure‐activity and structure‐property relationships methods. We consider a number of infinite convex benzenoid networks that include polyacene, parallelogram, trapezium, triangular, bitrapezium, and circumcorone series benzenoid networks. For all such networks, we compute analytical expressions for both vertex‐degree and edge‐based topological indices such as edge‐Wiener, vertex‐edge Wiener, vertex‐Szeged, edge‐Szeged, edge‐vertex Szeged, total‐Szeged, Padmakar‐Ivan, Schultz, Gutman, Randić, generalized Randić, reciprocal Randić, reduced reciprocal Randić, first Zagreb, second Zagreb, reduced second Zagreb, hyper Zagreb, augmented Zagreb, atom‐bond connectivity, harmonic, sum‐connectivity, and geometric‐arithmetic indices. In addition we have obtained expressions for these topological indices for 3 types of parallelogram‐like polycyclic benzenoid networks.