Premium
On the implementation of spatial constraints in multivariate curve resolution alternating least squares for hyperspectral image analysis
Author(s) -
Hugelier Siewert,
Devos Olivier,
Ruckebusch Cyril
Publication year - 2015
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.2742
Subject(s) - hyperspectral imaging , bilinear interpolation , pixel , computer science , least squares function approximation , multivariate statistics , spatial analysis , sample (material) , constraint (computer aided design) , image resolution , pattern recognition (psychology) , artificial intelligence , algorithm , mathematics , computer vision , statistics , chemistry , machine learning , geometry , chromatography , estimator
Hyperspectral imaging (HSI) is a method for exploring spatial and spectral information associated with the distribution of the different compounds in a chemical or biological sample. Amongst the multivariate image analysis tools utilized to decompose the raw data into a bilinear model, multivariate curve resolution alternating least squares (MCR‐ALS) can be applied to obtain the distribution maps and pure spectra of the components of the sample image. However, a requirement is to have the data in a two‐way matrix. Thus, a preliminary step consists of unfolding the raw HSI data into a single‐pixel direction. Consequently, through this data manipulation, the information regarding pixel neighboring is lost, and spatial information cannot directly be constrained on the component profiles in the current MCR‐ALS algorithm. In this short communication, we propose an adaptation of the MCR‐ALS framework, enabling the potential implementation of any variation of spatial constraint. This can be achieved by adding, at each least‐squares step, refolding/unfolding of the distribution maps for the components. The implementation of segmentation, shape smoothness, and image modeling as spatial constraints is proposed as a proof of concept. Copyright © 2015 John Wiley & Sons, Ltd.