Premium
Partial least‐squares discriminant analysis optimized by particle swarm optimization: application to 1 H nuclear magnetic resonance analysis of lung cancer metabonomics
Author(s) -
Liu YiFei,
Xu Shan,
Gong Hong,
Cui YanFang,
Song DanDan,
Zhou YanPing
Publication year - 2015
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.2737
Subject(s) - partial least squares regression , linear discriminant analysis , latent variable , discriminative model , artificial intelligence , particle swarm optimization , pattern recognition (psychology) , chemistry , mathematics , computer science , statistics , machine learning
The complexity of metabolic profiles makes chemometric tools indispensable for extracting the most significant information. Partial least‐squares discriminant analysis (PLS‐DA) acts as one of the most effective strategies for data analysis in metabonomics. However, its actual efficacy in metabonomics is often weakened by the high similarity of metabolic profiles, which contain excessive variables. To rectify this situation, particle swarm optimization (PSO) was introduced to improve PLS‐DA by simultaneously selecting the optimal sample and variable subsets, the appropriate variable weights, and the best number of latent variables (SVWL) in PLS‐DA, forming a new algorithm named PSO‐SVWL‐PLSDA. Combined with 1 H nuclear magnetic resonance‐based metabonomics, PSO‐SVWL‐PLSDA was applied to recognize the patients with lung cancer from the healthy controls. PLS‐DA was also investigated as a comparison. Relatively to the recognition rates of 86% and 65%, which were yielded by PLS‐DA, respectively, for the training and test sets, those of 98.3% and 90% were offered by PSO‐SVWL‐PLSDA. Moreover, several most discriminative metabolites were identified by PSO‐SVWL‐PLSDA to aid the diagnosis of lung cancer, including lactate, glucose (α‐glucose and β‐glucose), threonine, valine, taurine, trimethylamine, glutamine, glycoprotein, proline, and lipid. Copyright © 2015 John Wiley & Sons, Ltd.