z-logo
Premium
Estimation of rotation ambiguity in multivariate curve resolution with charged particle swarm optimization (cPSO‐MCR)
Author(s) -
Skvortsov Alexey N.
Publication year - 2014
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.2663
Subject(s) - particle swarm optimization , population , mathematical optimization , algorithm , computer science , set (abstract data type) , mathematics , biological system , programming language , demography , sociology , biology
Rotation ambiguity (RA) in multivariate curve resolution (MCR) is an undesirable case, when the physicochemical constraints are not sufficiently strong to provide a unique resolution of the data matrix of the mixtures into spectra and concentration profiles of individual chemical components. RA is often met in MCR of overlapped chromatographic peaks, kinetic and equilibrium data, and fluorescence two‐dimensional spectra. In case of RA, a single candidate solution has little practical value. So, the whole set of feasible solutions should be characterized somehow. It is a quite intricate task in a general case. In the present paper, a method was proposed to estimate RA with charged particle swarm optimization (cPSO), a population‐based algorithm. The criteria for updating the particles were modified, so that the swarm converged to the steady state, which spanned the set of feasible solutions. The performance of cPSO‐MCR was demonstrated on test functions, simulated datasets, and real‐world data. Good accordance of the cPSO‐MCR results with the analytical solutions (Borgen plots) was observed. cPSO‐MCR was also shown to be capable of estimating the strength of the constraints and of revealing RA in noisy data. As compared with analytical methods, cPSO‐MCR is simpler to implement, expands to more than three chemical compounds, is immune to noise, and can be easily adapted to virtually all types of constraints and objective functions (constraint based or residue based). cPSO‐MCR also provides natural visual information about the level of RA in spectra and concentration profiles, similar to the methods of two extreme solutions (e.g., MCR‐BANDS). Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here