z-logo
Premium
Orthogonal signal correction‐based prediction of total antioxidant activity using partial least squares regression from chromatograms
Author(s) -
Şahin Saliha,
Işık Esra,
Aybastıer Önder,
Demir Cevdet
Publication year - 2012
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.2450
Subject(s) - partial least squares regression , chemistry , chromatography , normalization (sociology) , linear regression , smoothing , mathematics , antioxidant , statistics , organic chemistry , sociology , anthropology
The multivariate calibration methods—partial least squares (PLS), orthogonal signal correction and partial least squares (OSC‐PLS)—were employed for the prediction of total antioxidant activities of four Prunella L. species. High‐performance liquid chromatography (HPLC) and spectrophotometric approaches were used to determine the total antioxidant activity of the Prunella L. samples. Several preprocessing techniques such as smoothing and normalization were employed to extract the chemically relevant information from the data after alignment with correlation optimized warping. The importance of the preprocessing was investigated by calculating the root mean square error for the calibration set for the total antioxidant activity of Prunella L. samples. The models developed on the basis of the preprocessed data were able to predict the total antioxidant activity with a precision comparable to that of the reference 2,2‐azino‐di‐(3‐ethylbenzothialozine‐sulfonic acid) and 2,2‐diphenyl‐1‐picrylhydrazyl methods. The OSC‐PLS model seems preferable because of its predictive and describing abilities and good interpretability of the contribution of compounds to the total antioxidant activity. The contribution of individual phenolic compounds to the total antioxidant activity was identified by HPLC. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here