z-logo
Premium
Framework for explicit drift correction in multivariate calibration models
Author(s) -
Gujral Paman,
Amrhein Michael,
Wise Barry M.,
Bonvin Dominique
Publication year - 2010
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.1291
Subject(s) - subspace topology , calibration , projection (relational algebra) , orthographic projection , principal component analysis , partial least squares regression , multivariate statistics , mathematics , regression , concept drift , statistics , algorithm , computer science , artificial intelligence , mathematical analysis , data stream
Latent‐variable calibrations using principal component regression and partial least‐squares regression are often compromised by drift such as systematic disturbances and offsets. This paper presents a two‐step framework that facilitates the evaluation and comparison of explicit drift‐correction methods. In the first step, the drift subspace is estimated using different types of correction data in a master/slave setting. The correction data are measured for the slave with drift and computed for the master with no drift. In the second step, the original calibration data are corrected for the estimated drift subspace using shrinkage or orthogonal projection. The two cases of no correction and drift correction by orthogonal projection can be seen as special cases of shrinkage. The two‐step framework is illustrated with four different experimental data sets. The first three examples study drift correction on one instrument (temperature effects, spectral differences between samples obtained from different plants, instrumental drift), while the fourth example studies calibration transfer between two instruments. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here