z-logo
Premium
Robustified least squares support vector classification
Author(s) -
Debruyne Michiel,
Serneels Sven,
Verdonck Tim
Publication year - 2009
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.1241
Subject(s) - support vector machine , outlier , artificial intelligence , pattern recognition (psychology) , computer science , least squares support vector machine , class (philosophy) , least squares function approximation , data mining , machine learning , mathematics , statistics , estimator
Support vector machine (SVM) algorithms are a popular class of techniques to perform classification. However, outliers in the data can result in bad global misclassification percentages. In this paper, we propose a method to identify such outliers in the SVM framework. A specific robust classification algorithm is proposed adjusting the least squares SVM (LS‐SVM). This yields better classification performance for heavily tailed data and data containing outliers. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom