Premium
Bilinear modelling of batch processes. Part II: a comparison of PLS soft‐sensors
Author(s) -
Camacho José,
Picó Jesús,
Ferrer Alberto
Publication year - 2008
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.1179
Subject(s) - partial least squares regression , principal component analysis , computer science , imputation (statistics) , data mining , bilinear interpolation , soft sensor , artificial intelligence , process (computing) , machine learning , missing data , computer vision , operating system
The on‐line monitoring of batch processes based on principal component analysis (PCA) has been widely studied. Nonetheless, researchers have not paid so much attention to the on‐line application of partial least squares (PLS). In this paper, the influence of several issues in the predictive power of a PLS model for the on‐line estimation of key variables in a batch process is studied. Some of the conclusions can help to better understand the capabilities of the proposals presented for on‐line PCA‐based monitoring. Issues like the convenience of batch‐wise or variable‐wise unfolding, the method for the imputation of future measurements and the use of several sub‐models are addressed. This is the first time that the adaptive hierarchical (or multi‐block) approach is extended to the PLS modelling. Also, the formulation of the so‐called trimmed scores regression (TSR), a powerful imputation method defined for PCA, is extended for its application with PLS modelling. Data from two processes, one simulated and one real, are used to illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.