z-logo
Premium
Tucker1 model algorithms for fast solutions to large PARAFAC problems
Author(s) -
Van Benthem Mark H.,
Keenan Michael R.
Publication year - 2008
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.1130
Subject(s) - computer science , algorithm , data set , set (abstract data type) , upload , matrix (chemical analysis) , hyperspectral imaging , data matrix , data mining , artificial intelligence , chemistry , chromatography , clade , biochemistry , phylogenetic tree , gene , programming language , operating system
We describe a method of performing trilinear analysis on large data sets using a modification of the PARAFAC‐ALS algorithm. Our method iteratively decomposes the data matrix into a core matrix and three loading matrices based on the Tucker1 model. The algorithm is particularly useful for data sets that are too large to upload into a computer's main memory. While the performance advantage in utilizing our algorithm is dependent on the number of data elements and dimensions of the data array, we have seen a significant performance improvement over operating PARAFAC‐ALS on the full data set. In one case of data comprising hyperspectral images from a confocal microscope, our method of analysis was approximately 60 times faster than operating on the full data set, while obtaining essentially equivalent results. Copyright © 2008 by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom