Premium
Modeling based on subspace orthogonal projections for QSAR and QSPR research
Author(s) -
Liang Yizeng,
Yuan Dalin,
Xu Qingsong,
Kvalheim Olav Martin
Publication year - 2008
Publication title -
journal of chemometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.47
H-Index - 92
eISSN - 1099-128X
pISSN - 0886-9383
DOI - 10.1002/cem.1094
Subject(s) - quantitative structure–activity relationship , orthogonalization , subspace topology , projection (relational algebra) , computer science , partial least squares regression , mathematics , algorithm , artificial intelligence , machine learning
A novel projection modeling method for quantitative structure activity relationship (QSAR) and quantitative structure property relationship (QSPR) is developed in this paper. Orthogonalization of block variables is introduced to deal with the problem of variable selection. Projections based on least squares are used to construct the modeling space in order to search for the best regression directions for chemical modeling. A suitable prediction space for such a model is further defined to confine the usage range of the model. Three real data sets were analyzed to check the performance of the proposed modeling method. The results obtained from Monte‐Carlo cross‐validation (MCCV) showed that the proposed modeling method might provide better results for QSAR and QSPR modeling than PCR and PLS with respect to both fitting and prediction abilities. Copyright © 2007 John Wiley & Sons, Ltd.