z-logo
Premium
Mechanisms of Si Nanoparticle Formation by Molten Salt Magnesiothermic Reduction of Silica for Lithium‐ion Battery Anodes
Author(s) -
Ansari Hamedani Ali,
OwYang Cleva W.,
Hayat Soytas Serap
Publication year - 2021
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.202100683
Subject(s) - materials science , nanoparticle , chemical engineering , electrolyte , eutectic system , molten salt , microstructure , lithium (medication) , anode , lithium ion battery , battery (electricity) , electrode , nanotechnology , metallurgy , chemistry , medicine , power (physics) , physics , quantum mechanics , endocrinology , engineering
Molten salt methods enable the synthesis of Si nanostructures by moderating the thermal energy evolved in highly exothermic magnesiothermic reduction reactions (MRR) of silica. Due to their cost‐effectiveness and scalability, these techniques are well suited for producing nanoscale Si for a number of applications, including energy storage. To control the microstructure morphology and particle size, it is necessary to understand the formation mechanism of the Si produced. By evaluating the time‐resolved phase evolution, when NaCl moderates the thermal energy generated by MRR of SiO 2 , we elucidate 3 parallel interfacial reaction mechanisms yielding Si nanoparticles – via Mg vapor, Mg‐rich eutectic liquid, and Mg ions dissolved in molten NaCl. These individual Si nanoparticles offer a striking contrast to the typical by‐product of MRR of SiO 2 with and without NaCl, which yields a 3‐dimensional (3‐D) porous network of sintered Si nanoparticles. Lithium‐ion battery half‐cells with electrodes composed of individual Si nanoparticles showed a greater first‐cycle irreversible discharge capacity and faster capacity loss over the first 5 cycles at a current density of 200 mA g −1 compared to half‐cells with electrodes of a porous 3‐D Si network–indicative due to thicker solid electrolyte interphase (SEI) formation on individual particles. At a higher current rate of 400 mA g −1 , once SEI formation and activation of Si are established, both cells exhibit a similar capacity retention rate over 100 cycles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here