Premium
Structural Features of Porous CoFe Nanocubes and Their Performance for Oxygen‐involving Energy Electrocatalysis
Author(s) -
Jo Sujin,
Noh Sunguk,
Wee KyungRyang,
Shim Jun Ho
Publication year - 2020
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.202000630
Subject(s) - tafel equation , electrocatalyst , mesoporous material , overpotential , microporous material , calcination , materials science , catalysis , oxygen evolution , chemical engineering , porosity , prussian blue , chemistry , electrode , composite material , electrochemistry , organic chemistry , engineering
The structural properties of CoFe composites fabricated from inexpensive Co(II) and Fe(III) precursors using a Prussian blue analogue (PBA) strategy without additional reductants were investigated. Microporous CoFe‐200 and microporous/mesoporous CoFe‐550 structures of the CoFe catalysts (CoFe‐PBA) were produced by calcination for 1 h in N 2 at 200 °C or 550 °C, respectively. The electrocatalytic activities of the CoFe catalysts produced for the oxygen evolution and reduction reactions (OER/ORR) were studied in alkaline media. The OER measurements revealed the CoFe‐200 catalyst to be superior to CoFe‐PBA and CoFe‐550, and even surpass the activity of commercial Ir/C in terms of the overpotential at 10 mA cm −2 and onset potential ( E o n s e t O E R ). On the other hand, the ORR activity of CoFe‐550 exhibited a more positive half‐wave potential (0.837 V vs. RHE) and E o n s e t O R R(0.942 V vs. RHE) than CoFe‐200. The Tafel slope (−55.9 mV dec −1 ) of CoFe‐550 was lower than that of Pt/C (−77.8 mV dec −1 ). A comparison of CoFe‐200 and CoFe‐550 suggested that the microporosity of CoFe‐200 (average pore diameter, d ≤2 nm) was beneficial in terms of the OER. In contrast, the mesoporous ( d ≈35.6 nm) structure of CoFe‐550 promoted the mass‐transport kinetics of oxygen through the electrode surface. CoFe nanocubes with tunable porosity are potential catalysts that can be utilized selectively for the OER and ORR.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom