Premium
Metal‐Organic‐Framework‐Derived MCo 2 O 4 (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications
Author(s) -
Huang Tingting,
Lou Zheng,
Lu Yao,
Li Rui,
Jiang Yuan,
Shen Guozhen,
Chen Di
Publication year - 2019
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.201901445
Subject(s) - nanosheet , materials science , supercapacitor , power density , anode , electrochemistry , carbon fibers , electrode , current density , energy storage , metal , chemical engineering , microstructure , nanotechnology , metallurgy , composite material , chemistry , power (physics) , composite number , physics , quantum mechanics , engineering
Electrode materials with special microstructures derived from metal‐organic frameworks (MOFs) exhibited high performance in electrochemical energy storage devices. In this manuscript, using freshly prepared Co−MOF nanosheet arrays as the self‐sacrificed template, MCo 2 O 4 (M=Mn and Zn) nanosheet arrays were successfully grown on carbon cloth (CC) by using a facile solution method. As‐prepared MnCo 2 O 4 @CC and ZnCo 2 O 4 @CC were used as the integrated electrodes for supercapacitors and Li‐ion batteries. Studies found that both integrated electrodes delivered high capacity and a long cycling life of 20 000 cycles with the capacity retention of 95.5 % for MnCo 2 O 4 @CC and 94.7 % for ZnCo 2 O 4 @CC at the current density of 50 mA cm −2 , respectively. Assembled into asymmetric supercapacitors with carbon nanosheet arrays@CC (CNS@CC), the obtained maximum energy densities were measured to be 25.6 Wh kg −1 at the power density of 3.4 kW kg −1 for MnCo 2 O 4 @CC//CNS@CC based device and 22.7 Wh kg −1 at the power density of 4.1 kW kg −1 for ZnCo 2 O 4 @CC//CNS@CC based device, respectively. In addition, both integrated electrodes also showed good lithium storage performance, delivering high capacities of 1289 mA h/g (MnCo 2 O 4 @CC) and 1376 mA h/g (ZnCo 2 O 4 @CC) even after 200 cycles at the current density of 1 A g −1 , respectively. The outstanding performances suggest the potential of both nanosheet arrays integrated electrodes for extensive applications in energy storage devices.