z-logo
Premium
In Situ Synthesis and Electrocatalytic Performance of Fe/Fe 2.5 C/Fe 3 N/Nitrogen‐Doped Carbon Nanotubes for the Oxygen Reduction Reaction
Author(s) -
Yan Ping,
Kong Dewang,
Yuan Wenjing,
Xie Anjian,
Shen Yuhua
Publication year - 2019
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.201900716
Subject(s) - carbon nanotube , materials science , catalysis , nanocomposite , methanol , electrolyte , nitrogen , carbon fibers , doping , oxygen , chemical engineering , nuclear chemistry , inorganic chemistry , nanotechnology , electrode , chemistry , composite material , organic chemistry , composite number , optoelectronics , engineering
I n this study, a novel one‐dimensional iron‐based nitrogen‐doped carbon nanotube (N‐CNT) nanocomposite (Fe/Fe 2.5 C/Fe 3 N/N‐CNT) was successfully synthesized in situ by using a facile and low‐cost method. In alkaline media, the typical product (Fe/Fe 2.5 C/Fe 3 N/N‐CNT‐30) showed an good onset potential ( E onset =0.93 V vs RHE), half‐wave potential ( E 1/2 =0.79 V vs RHE), and current density ( J =6.62 mA cm −2 at 0.2 V vs RHE), especially compared to the commercial 20 % Pt/C catalyst (0.95 V, 0.82 V, 5.61 mA cm −2 , respectively). In acidic medium, it also exhibits a good oxygen reduction reaction (ORR) activity. Moreover, Fe/Fe 2.5 C/Fe 3 N/N‐CNT‐30 exhibited superior long‐term durability and methanol tolerance compared to Pt/C in both alkaline and acidic media. The excellent electrocatalytic performance of this material is attributed to the abundant carbon defects in the carbon structure, the high content doping of pyridinic N and graphitic N into the CNTs, the multi‐model Fe species as active sites, and the fact that most Fe species within the CNTs avoid corrosion from electrolyte. This study paves a new way for highly active ORR electrocatalysts and promotes the rapid development of CNTs in some frontier fields.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here